Fusion anticipée de descripteurs bas niveau pour la détection d'émotions dans les textes

F. Dzogang, M.-J. Lesot, M. Rifqi WACAI 2012

16/11/2012

Objectif et contexte

Classification de textes bas niveau

```
\begin{array}{lll} \text{d}_1: \text{ "I love you my darling wife."} & \to & \textit{love} \\ \text{d}_2: \text{ "I am bitterly broken hearted."} & \to & \textit{anger} \\ \text{d}_3: \text{ "I drink soda."} & \to & \textit{neutral} \end{array}
```

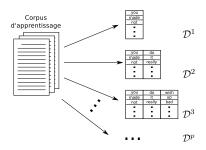
• multi-classes : modélisation catégorielle des émotions

Caractéristiques

- peu de données étiquetées
- déséquilibre des classes
- complexité des expressions linguistiques émotionnelles
 - ambiguïté, imprécisions, contexte d'apparition

Approche proposée

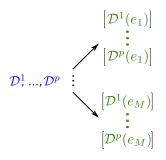
Représentation des textes


- descripteurs : n-grammes de différents ordres
 - *n*-gramme : suite consécutive de *n* termes
- spécialisation des dictionnaires selon les émotions
 - dictionnaire : ensemble de descripteurs
- combinaison par fusion anticipée

Classifieurs

- stratégie "un contre tous"
- 2 étapes de décision
- discrimination linéaire : interprétabilité des décisions

n-grammes de différents ordres


■ descripteurs : n-grammes uniques dont occurences ≥ 2 textes

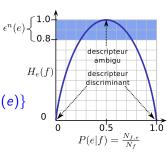
- couverture des descripteurs : n faibles
 - ex : sad $\{n = 1\}$ et sad to hear of $\{n = 4\}$
- contexte d'apparition des termes : n élevés
 - ex : bad $\{n = 1\}$, not bad $\{n = 2\}$, not really bad $\{n = 3\}$
 - $\Rightarrow p$ dictionnaires : $\mathcal{D}^1, \dots, \mathcal{D}^p$

Spécialisation des dictionnaires selon les émotions (1/2)

M classes émotionnelles : e₁,..., e_M

- objectif : éliminer les descripteurs les moins pertinents
- hypothèse : vocabulaire spécifique à chaque émotion

$$\Rightarrow p \times M$$
 dictionnaires : $\mathcal{D}^n(e_i), n \in [1..p], i \in [1..M]$


Spécialisation des dictionnaires selon les émotions (2/2)

objectif : éliminer les descripteurs les moins pertinents

- descripteur $f \in \mathcal{D}^n$ et émotion e : $P(e|f) = \frac{N_{f,e}}{N_f}$
 - vaut 1 lorsque f est spécifique à e
 - vaut 0 lorsque f est spécifique à $\neg e$
 - vaut 1/2 lorsque f n'est pas spécifique
- pertinence : entropie de Shannon
 - H_e(f) proche de 1 si f ambigu, de 0 si f discriminant

filtrage :
$$\mathcal{D}^n(e) = \{ f \in \mathcal{D}^n / \mathcal{H}_e(f) < \epsilon^n(e) \}$$

 \Rightarrow seuil spécifique à chaque

⇒ seun specifique a chaque émotion et à chaque ordre

Fusion anticipée des descripteurs spécifiques aux émotions

• espace de représentation final :

$$\mathcal{X}_e = \bigcup_{n=1}^p \mathcal{D}^n(e)$$

• vecteur de représentation d'un texte pour l'émotion e :

$$\mathbf{x}_e = \mathbf{x}_e^1 \oplus \ldots \oplus \mathbf{x}_e^p \in \mathcal{X}_e$$

Apprentissage des classifieurs

Stratégie un contre tous : M problèmes binaires

$$f_e: \mathcal{X}_e \to \{e, \neg e\}$$

 $\mathbf{x} \mapsto f_e(\mathbf{x})$

- corpus d'apprentissage pour f_e
 - exemples associés à l'étiquette e
 - ullet contre-exemples associés à une étiquette eq e
- classification en 2 étapes
 - 1. f_{neutre} discrimine neutre/émotionnel
 - 2. fe émotionnels : exemples neutre exclus

Classification linéaire : identification des descripteurs pertinents

- $f_e(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{x}, \boldsymbol{\alpha} \rangle + b)$
 - $\Rightarrow \alpha_j$: poids associés à chacun des $|\mathcal{X}_e|$ descripteurs
- SVM avec noyau linéaire et coût de classification asymétrique

Expérimentations

- corpus étiqueté : I2B2 track2 (2011)
 - 4 241 phrases étiquetées
- caractéristiques
 - textes très courts puisque réduits à une phrase
 - parmi les M=15 étiquettes, 2 ne sont pas des émotions
 - étiquettes instruction et information

Etiquette	# phrases	Etiquette	# phrases
neutral	2 460	anger	69
instruction	800	sorrow	51
hopelessness	455	hopefulness	47
love	296	happiness/peacefulness	25
information	295	fear	25
guilt	208	pride	15
blame	107	abuse	9
thankfulness	94	forgiveness	6

Représentation des textes

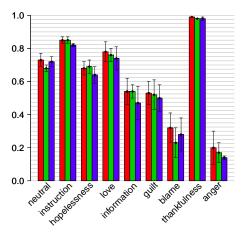
- descripteurs considérés :
 - mots, ponctuation, émoticônes
- présence/absence des descripteurs
 - x_e: vecteur binaire
- \bullet p=2: unigrammes et bigrammes pour toutes les émotions
 - pas de gain pour $p \ge 3$ (résultats expérimentaux)

Protocole expérimental

Performance des classifieurs : évaluation par validation croisée

• évaluation des performances pour étiquette e

$$\begin{array}{lll} \mathsf{tp}: f_{\mathsf{e}}(\mathbf{x}) = e & \wedge & y = e \\ \mathsf{fn}: f_{\mathsf{e}}(\mathbf{x}) = \neg e & \wedge & y = e \\ \mathsf{fp}: f_{\mathsf{e}}(\mathbf{x}) = e & \wedge & y = \neg e \end{array}$$


- couverture de la classe e
 prédictions correctes pour e rappel = tp/(tp + fn)
 - précision = tp/(tp + fp)
- ⇒ score F1 : moyenne harmonique entre rappel et précision

Dictionnaires

- analyse des tailles
- analyse du contenu : descripteurs les plus discriminants
 - au sens de la fonction de prédiction

Résultats (1/3): scores F1

fusion (rouge), unigrammes (vert), et bigrammes (bleu)

- performances variables selon les étiquettes
- influence du nombre d'exemples d'apprentissage

Résultats (2/3): taille des dictionnaires

- dictionnaires non spécialisés
 - $|\mathcal{D}^1| = 1 \ 206, |\mathcal{D}^2| = 2 \ 968$
 - soit au total : 4 174 descripteurs
- spécialisation : variable selon les étiquettes
 - filtrage plus faible pour unigrammes que pour bigrammes
 - ex : $|\mathcal{D}^1(\text{neutral})| = 0.48 \times |\mathcal{D}^1|$ • ex : $|\mathcal{D}^2(\text{neutral})| = 0.45 \times |\mathcal{D}^2|$
 - \Rightarrow descripteurs plus spécifiques pour n > 1
 - filtrage plus faible pour étiquettes rares que fréquentes
 - ex : $|\mathcal{D}^2(\text{neutral})| = 0.45 \times |\mathcal{D}^2|$
 - ex : $|\mathcal{D}^2(\mathsf{abuse})| = 0.85 \times |\mathcal{D}^2|$
 - ⇒ descripteurs descriminants par leur absence

7 unigrammes et 7 bigrammes les plus discriminants pour 5 plus fréquentes émotions

Emotions	Descripteurs
Thankfulness	thank appreciate than nice effort kindness under be swell than you you dear appreciate it too . have be for your
Love	love wonderful bless watch beloved most loving you . do . be wonderful love you god bless your john me on
Hopelessness	cancer am suffer die struggle everybody tired without you go on dear jane can not . my be . of all
Guilt	sorry forgive excuse fail hurt could burden have be forgive me please forgive have do understand . not to help
Blame	sorry thank love please give wish go to be cause you of it you . you to in the to go

7 unigrammes et 7 bigrammes les plus discriminants pour 5 plus fréquentes émotions

Emotions	Descripteurs	
Thankfulness	thank appreciate than nice effort kindness under be swell than you you dear appreciate it too . have be for your	
Love	love wonderful bless watch beloved most loving you . do . be wonderful love you god bless your john me on	
Hopelessness	cancer am suffer die struggle everybody tired without you go on dear jane can not . my be . of all	
Guilt	sorry forgive excuse fail hurt could burden have be forgive me please forgive have do understand . not to to help	
Blame	sorry thank love please give wish go to be cause you of it you . you to in the to go	

descripteurs non nécessairement corrélés à ≠ ordres

7 unigrammes et 7 bigrammes les plus discriminants pour 5 plus fréquentes émotions

Emotions	Descripteurs
Thankfulness	thank appreciate than nice effort kindness under be swell than you you dear appreciate it too . have be for your
Love	love wonderful bless watch beloved most loving you . do . be wonderful love you god bless your john me on
Hopelessness	cancer am suffer die struggle everybody tired without you go on dear jane can not . my be . of all
Guilt	sorry forgive excuse fail hurt could burden have be forgive me please forgive have do understand . not to help
Blame	sorry thank love please give wish go to be cause you of it you . you to in the to go

- descripteurs non nécessairement corrélés à \neq ordres
- descripteurs plus spécifiques pour n=2

7 unigrammes et 7 bigrammes les plus discriminants pour 5 plus fréquentes émotions

Emotions	Descripteurs	
Thankfulness	thank appreciate than nice effort kindness under be swell than you you dear appreciate it too . have be for your	
Love	love wonderful bless watch beloved most loving you . do . be wonderful love you god bless your john me on	
Hopelessness	cancer am suffer die struggle everybody tired without you go on dear jane can not . my be . of all	
Guilt	sorry forgive excuse fail hurt could burden have be forgive me please forgive have do understand . not to to help	
Blame	sorry thank love please give wish go to be cause you of it you . you to in the to go	

- descripteurs non nécessairement corrélés à ≠ ordres
- descripteurs plus spécifiques pour n = 2
- "." termine une phrase : position des termes semble importer

Conclusions et perspectives

Conclusions : représentation des textes pour les émotions

- *n*-grammes d'ordres différents
 - descripteurs génériques et descripteurs spécifiques
- spécialisation des dictionnaires
 - élimination des descripteurs les moins informatifs
- fusion des dictionnaires
 - améliore en moyenne les scores F1
 - unigrammes

 [→] rappel et bigrammes
 [→] précision

Perspectives

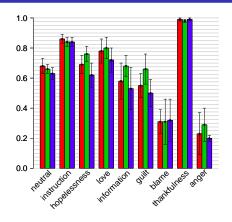
- ordres plus élevés pertinents selon les émotions
 - $n = 3 \rightarrow sorrow F1 = 0.98$ et hopelessness F1 = 0.8
- bas niveau limité par la base d'apprentissage
 - ordres plus élevés et émotions rares
 - ⇒ combinaison de descripteurs bas niveau et haut niveau

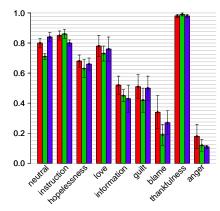
Annexes

WACI 2013: Workshop on Affective Computational Intelligence Workshop Co-Chairs: M.-J. Lesot (LIP6), M. Rifqi (LIP6), J.-C. Martin (LIMSI)

http://ieee-ssci.org deadline: 23 nov. 2012

2013 IEEE Symposium Series on Computational Intelligence
IEEE SSCI 2013

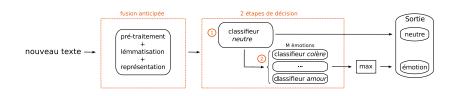

15 Mon -19 Fri April 2013, Singapore
Grand Copthorne Waterfront Hotel


Topics of interest

- theories of emotions from psychology and their application to computer sciences
- computational models for processing emotions and other affective states
- multimodal emotional corpora
- automatic emotion recognition from physiological signals, facial expressions, body language, speech
- emotion mining in texts, images, videos, film, multimedia data
- affective interaction with virtual agents and robots

Résultats : rappel et précision

fusion (rouge), unigrammes (vert), et bigrammes (bleu)



apport des unigrammes en moyenne / Rappel (descripteurs couvrants)

apport des bigrammes en moyenne ✓ Précision (descripteurs précis)

Vue globale de la chaîne de traitement

Etiquetage d'un nouveau texte

Etape 1:

- entrée : textes pré-traités
- discrimination entre neutre et émotionnel

Etape 2:

- entrée : textes émotionnels
- discrimination entre chaque émotion et toutes les autres
 - ⇒ émotion détectée : celle de confiance maximale

Compétition I2B2 track 2 : résultats des participants

Système	Haut niveau	score F1
Open university	oui	0.61
Msra	oui	0.59
Mayo	oui	0.56
Nrciit	oui	0.55
Oslo	oui	0.54
Limsi	oui	0.54
Swatmrc	oui	0.53
Uman	oui	0.53
Cardiff	oui	0.53
Lt3	oui	0.53
Utd	oui	0.52
Wolverine	oui	0.50
Clips	oui	0.50
Sri et UcDavis	oui	0.48
Diego-Acu	oui	0.48
Notre approche	non	0.47
Ebi	non	0.46
Duluth	non	0.45
Tpavacoe	non	0.38
Lassa	non	0.38

- les approches bas niveau sont limitées à F1 < 0.47
 - systèmes exploitant uniquement le corpus d'apprentissage
- les approches haut niveau mettent en œuvre
 - ressources sémantiques
 - ressources affectives
 - données externes